Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chin J Nat Med ; 20(8): 633-640, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36031235

ABSTRACT

The ribose and phosphorus contents in Haemophilus influenzae type b (Hib) capsular polysaccharide (CPS) are two important chemical indexes for the development and quality control of Hib conjugate vaccine. A quantitative 1H- and 31P-NMR method using a single internal standard was developed for simultaneous determination of ribose and phosphorus contents in Hib CPS. Hexamethylphosphoramide (HMPA) was successfully utilized as an internal standard in quantitative 1H-NMR method for ribose content determination. The ribose and phosphorus contents were found to be affected by the concentration of polysaccharide solution. Thus, 15-20 mg·L-1 was the optimal concentration range of Hib CPS in D2O solution for determination of ribose and phosphorus contents by this method. The ribose and phosphorus contents obtained by the quantitative NMR were consistent with those obtained by traditional chemical methods. In conclusion, this quantitative 1H- and 31P-NMR method using a single internal standard shows good specificity, accuracy and precision, providing a valuable approach for the quality control of Hib glycoconjugate vaccines.


Subject(s)
Haemophilus Vaccines , Haemophilus influenzae type b , Phosphorus , Polysaccharides, Bacterial , Ribose
2.
Chin J Nat Med ; 20(6): 401-420, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35750381

ABSTRACT

Bacterial surface glycans perform a diverse and important set of biological roles, and have been widely used in the treatment of bacterial infectious diseases. The majority of bacterial surface glycans are decorated with diverse rare functional groups, including amido, acetamidino, carboxamido and pyruvate groups. These functional groups are thought to be important constituents for the biological activities of glycans. Chemical synthesis of glycans bearing these functional groups or their variants is essential for the investigation of structure-activity relationships by a medicinal chemistry approach. To date, a broad choice of synthetic methods is available for targeting the different rare functional groups in bacterial surface glycans. This article reviews the structures of naturally occurring rare functional groups in bacterial surface glycans, and the chemical methods used for installation of these groups.


Subject(s)
Bacterial Infections , Polysaccharides , Humans , Polysaccharides/chemistry , Structure-Activity Relationship
3.
Chin J Nat Med ; 20(5): 387-392, 2022 May.
Article in English | MEDLINE | ID: mdl-35551773

ABSTRACT

Most bacterial cell surface glycans are structurally unique, and have been considered as ideal target molecules for the developments of detection and diagnosis techniques, as well as vaccines. Chemical synthesis has been a promising approach to prepare well-defined oligosaccharides, facilitating the structure-activity relationship exploration and biomedical applications of bacterial glycans. L-Galactosaminuronic acid is a rare sugar that has been only found in cell surface glycans of gram-negative bacteria. Here, an orthogonally protected L-galactosaminuronic acid building block was designed and chemically synthesized. A synthetic strategy based on glycal addition and TEMPO/BAIB-mediated C6 oxidation served well for the transformation of commercial L-galactose to the corresponding L-galactosaminuronic acid. Notably, the C6 oxidation of the allyl glycoside was more efficient than that of the selenoglycoside. In addition, a balance between the formation of allyl glycoside and the recovery of selenoglycoside was essential to improve efficiency of the NIS/TfOH-catalyzed allylation. This synthetically useful L-galactosaminuronic acid building block will provide a basis for the syntheses of complex bacterial glycans.


Subject(s)
Carbohydrates , Polysaccharides , Glycosides , Oligosaccharides , Oxidation-Reduction , Polysaccharides/chemistry
4.
Chin J Nat Med ; 18(8): 628-632, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32768170

ABSTRACT

D-Glycero-D-mannno-heptose 1ß, 7-bisphosphate (HBPß) is an important intermediate for constructing the core structure of Gram-negative bacterial lipopolysaccharides and was reported as a pathogen-associated molecular pattern (PAMP) that regulates immune responses. HBPß with 3-O-amyl amine linker and its monophosphate derivative D-glycero-D-mannno-heptose 7-phosphate (HP) with 1α-amyl amine linker have been synthesized as candidates for immunity study of HBPß. The O3-amyl amine linker of heptose was installed by dibutyltin oxide-mediated regioselective alkylation under fine-tuned protecting condition. The stereoselective installation of 1ß-phosphate ester was achieved by NIS-mediated phosphorylation at low temperature. The strategy for installation of 3-O-amyl amine linker onto HBP derivative can be expanded to the syntheses of other conjugation-ready carbohydrates bearing anomeric phosphoester.


Subject(s)
Amines/chemical synthesis , Gram-Negative Bacteria/chemistry , Heptoses/chemical synthesis , Lipopolysaccharides/chemistry , Organotin Compounds/chemical synthesis
5.
Mar Drugs ; 16(11)2018 Nov 04.
Article in English | MEDLINE | ID: mdl-30400349

ABSTRACT

Five new limonoids named thaigranatins A⁻E (1⁻5), containing a C1⁻O⁻C29 moiety, were isolated from seeds of the Thai Xylocarpus granatum, collected at the mangrove swamp of Trang Province, together with the known limonoid, granatumin L (6). The structures of these compounds were established by HR-ESIMS and extensive NMR spectroscopic data. The absolute configuration of 1 was unequivocally determined by single-crystal X-ray diffraction analysis, conducted with Cu Kα radiation; whereas that of 2 or 6 was established to be the same as that of 1 by the similarity of their electronic circular dichroism (ECD) spectra. In view of the marked antiviral activity of 6, its structure was modified via hydrolysis with alkaline KOH, esterification with diazomethane and various organic acids, and oximization with hydroxyamine. Finally, 18 derivatives, viz. 7⁻10, 8a⁻8i, 9a⁻9b, and 10a⁻10c, were obtained. In vitro antiviral activities of these derivatives against human immunodeficiency virus 1 (HIV-1) and influenza A virus (IAV) were evaluated. Most notably, 8i exhibited marked inhibitory activity against HIV-1 with an IC50 value of 15.98 ± 6.87 µM and a CC50 value greater than 100.0 µM; whereas 10b showed significant inhibitory activity against IAV with an IC50 value of 14.02 ± 3.54 µM and a CC50 value greater than 100.0 µM.


Subject(s)
Antiviral Agents/pharmacology , Limonins/pharmacology , Meliaceae/chemistry , Plant Extracts/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Circular Dichroism , Crystallography, X-Ray , Drug Evaluation, Preclinical , HEK293 Cells , HIV-1/drug effects , Humans , Influenza A virus/drug effects , Inhibitory Concentration 50 , Limonins/chemistry , Limonins/isolation & purification , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Extracts/chemistry , Seeds/chemistry , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL